首页> 外文OA文献 >A first-principles study of carbon-related energy levels in GaN. Part I - complexes formed by substitutional/interstitial carbons and gallium/nitrogen vacancies
【2h】

A first-principles study of carbon-related energy levels in GaN. Part I - complexes formed by substitutional/interstitial carbons and gallium/nitrogen vacancies

机译:GaN中碳相关能级的第一性原理研究。第一部分    - 由取代/间隙碳和间隙形成的配合物   镓/氮空位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Various forms of carbon based complexes in GaN are studied withfirst-principles calculations employing Heyd-Scuseria-Ernzerhof hybridfunctional within the framework of density functional theory. We considercarbon complexes made of the combinations of single impurities, i.e.$\mathrm{C_N-C_{Ga}}$, $\mathrm{C_I-C_N}$ and $\mathrm{C_I-C_{Ga}}$, where$\mathrm{C_N}$, $\mathrm{C_{Ga}}$ and $\mathrm{C_I}$ denote C substitutingnitrogen, C substituting gallium and interstitial C, respectively, and ofneighboring gallium/nitrogen vacancies ($\mathrm{V_{Ga}}$/$\mathrm{V_N}$), i.e.$\mathrm{C_N-V_{Ga}}$ and $\mathrm{C_{Ga}-V_N}$. Formation energies arecomputed for all these configurations with different charge states after fullgeometry optimizations. From our calculated formation energies, thermodynamictransition levels are evaluated, which are related to the thermal activationenergies observed in experimental techniques such as deep level transientspectroscopy. Furthermore, the lattice relaxation energies (Franck-Condonshift) are computed to obtain optical activation energies, which are observedin experimental techniques such as deep level optical spectroscopy. We compareour calculated values of activation energies with the energies ofexperimentally observed C-related trap levels and identify the physical originsof these traps, which are unknown before.
机译:使用Heyd-Scuseria-Ernzerhof杂化功能在密度泛函理论的框架内进行第一性原理计算,研究了GaN中各种形式的碳基络合物。我们考虑由单一杂质(即$ \ mathrm {C_N-C_ {Ga}} $,$ \ mathrm {C_I-C_N} $和$ \ mathrm {C_I-C_ {Ga}} $)组成的碳配合物,其中\ mathrm {C_N} $,$ \ mathrm {C_ {Ga}} $和$ \ mathrm {C_I} $分别表示C替代氮,C替代镓C和间隙C,以及相邻的镓/氮空位($ \ mathrm {V_ {Ga}} $ / $ \ mathrm {V_N} $),即$ \ mathrm {C_N-V_ {Ga}} $和$ \ mathrm {C_ {Ga} -V_N} $。在完全几何​​优化之后,针对所有这些具有不同电荷状态的构型计算形成能。从我们计算出的地层能量中,可以估算出热力学跃迁能级,该热力学跃迁能级与在实验技术(如深能级瞬变光谱学)中观察到的热活化能有关。此外,计算晶格弛豫能量(Franck-Condonshift)以获得光学活化能,其在诸如深能级光谱学的实验技术中观察到。我们将活化能的计算值与实验观察到的C相关陷阱能级的能量进行比较,并确定这些陷阱的物理起源,这是以前未知的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号